

EE 232 Lightwave Devices Lecture 2: Basic Concepts of Lasers

Instructor: Ming C. Wu

University of California, Berkeley Electrical Engineering and Computer Sciences Dept.

EE232 Lecture 2-1 Prof. Ming Wu

Basic Concept of Lasers

Cleaved Semiconductor Laser Facet

Laser:

- Light Amplification by Stimulated Emission of Radiation
- Basic elements:
 - Gain media
 - Optical cavity
- Threshold condition:
 - Bias point where laser starts to "lase"
 - Gain (nearly) equals loss

EE232 Lecture 2-2 Prof. Ming Wu

L-I Curve of Semiconductor Lasers

- Distinctive threshold (at least in classical lasers)
- Semiconductor laser is a forwardbiased p-n junction, so mainly a current-biased device
- Threshold current :
 - Minimum current at which the laser starts to "lase"
- Quantum efficiency
 - "Differential" electrical-tooptical conversion efficiency, i.e., how many photons generated by injected electrons beyond threshold
- Wall-plug efficiency
 - Total electrical-to-optical conversion efficiency

EE232 Lecture 2-3

Prof. Ming Wu

"Edge-Emitting" Semiconductor Lasers

g: gain coefficient [cm⁻¹]

Light ampflication: $I(z) = I_0 e^{\Gamma gz}$

 Γ : confinement factor

(fraction of energy in gain media)

Threshold condition:

Round-trip gain = 1

$$e^{\Gamma gL - \alpha_i L} R_1 e^{\Gamma gL - \alpha_i L} R_2 = 1$$

$$g = g_{th} = \frac{\alpha_i}{\Gamma} + \frac{1}{2\Gamma L} \ln \left(\frac{1}{R_1 R_2} \right) = \frac{\alpha_i + \alpha_m}{\Gamma}$$

$$\alpha_i$$
: intrinsic loss

$$\begin{cases} \alpha_m = \frac{1}{2L} \ln \left(\frac{1}{R_1 R_2} \right) : \text{ mirror loss} \\ \text{ (i.e., output light)} \end{cases}$$

Modern Lasers

Optical cavity does not necessarily consist of mirrors

EE232 Lecture 2-5

Prof. Ming Wu

Generic Description of Optical Cavity

Energy ω **Quality Factor:**

$$Q = \frac{\text{Energy Stored}}{\text{Energy Dissipated per Cycle}}$$

$$Q = \frac{\omega}{\Delta \omega}$$

$$\Delta\omega = \frac{1}{\tau_p}$$

 τ_p : photon lifetime [sec]

$$\frac{1}{\tau_p} = \alpha \frac{c}{n}$$

 $\frac{1}{\tau_p} = \alpha \frac{c}{n}$ \quad \left(\alpha: \loss \text{ rate per cm}}{1/\tau_p: \loss \text{ rate per sec}}\right)

$$Q = \omega \tau_p$$

Photon Lifetime and Spectral Width

Decay of optical energy when input is turned off (ring-down measurement):

$$I(t) = I_0 e^{-t/\tau_p} \quad \text{for } t \ge 0$$

Electrical (optical) field:

$$E(t) = E_0 e^{j\omega_0 t} e^{-t/2\tau_p} \quad \text{for } t \ge 0$$

Frequency domain response (Fourier transform):

FWHM of
$$|H(\omega)|^2$$
: $\omega - \omega_0 = \pm \frac{1}{2\tau_p}$

$$\Delta\omega = \frac{1}{\tau_p}$$

Threshold Condition of Generic Lasers

Gain = Loss

(rate of gain = rate of loss)

$$\Gamma g_{th} \frac{c}{n} = \frac{1}{\tau_p} = \frac{\omega}{Q}$$

$$g_{th} = \frac{\omega}{Q} \frac{n}{\Gamma c}$$

Quantum efficiency:

$$\eta = \frac{\alpha_m}{\alpha_m + \alpha_i} = \frac{Q_{rad}^{-1}}{Q_{rad}^{-1} + Q_{loss}^{-1}} = \frac{Q_{rad}^{-1}}{Q^{-1}}$$

$$\eta = \frac{Q}{Q_{rad}}$$

Typical Q of Semiconductor Laser

Edge-emitting laser:

$$L = 100 \mu m$$
, $R = 30\%$, $\omega \sim 100 THz$, $\tau_p \sim 1 ps$, $Q \sim 600$

Vertical Cavity Surface-Emitting Laser (VCSEL)

$$L = 1\mu m, R = 99\%, Q \sim 700$$

Microdisk (Whispering Gallery Mode or WGM) Laser $Q \sim 1000$ (up to 10^{11} possible in low loss materials)

Photonic crystal laser: $Q \sim 1000$ (up to 10^6 possible)

Metal cavity laser (plasmonic laser): $Q \sim 10$ to 100

Gain Cross-Section

Gain cross-section (instead of gain coefficient) is often used to measure the gain in gas or solid-state lasers:

$$\sigma$$
: [cm²]

Gain cross-section is related to gain by:

$$g = N\sigma$$

where N is concentration of active molecules

For comparison, in semiconductor lasers:

$$g \sim 100 \text{ cm}^{-1}$$

 $N \sim 10^{18} \text{ cm}^{-3}$ (typical electron concentration at threshold)

$$\sigma \sim 10^{-16} \text{ cm}^2 (= (0.1 \text{nm})^2)$$

Note: more precise relation between gain and carrier concentration will be discussed in future lectures